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Time-averaged LDA measurements and time-resolved numerical flow predictions
were performed to investigate the laminar flow induced by the harmonic in-line
oscillation of a circular cylinder in water at rest. The key parameters, Reynolds number
Re and Keulegan–Carpenter number KC , were varied to study three parameter
combinations in detail. Good agreement was observed for Re = 100 and KC = 5
between measurements and predictions comparing phase-averaged velocity vectors.
For Re = 200 and KC = 10 weakly stable and non-periodic flow patterns occurred,
which made repeatable time-averaged measurements impossible. Nevertheless, the
experimentally visualized vortex dynamics was reproduced by the two-dimensional
computations. For the third combination, Re = 210 and KC = 6, which refers to
a totally different flow regime, the computations again resulted in the correct fluid
behaviour. Applying the widely used model of Morison et al. (1950) to the computed
in-line force history, the drag and the added-mass coefficients were calculated and
compared for different grid levels and time steps. Using these to reproduce the force
functions revealed deviations from those originally computed as already noted in
previous studies. They were found to be much higher than the deviations for the
coarsest computational grid or the largest time step. The comparison of several in-
line force coefficients with results obtained experimentally by Kühtz (1996) for β = 35
confirmed that force predictions could also be reliably obtained by the computations.

1. Introduction
The research field of fluid–structure interaction is attracting increased attention

from fluid mechanics researchers as well as structural engineers. The development of
new measuring techniques that provide detailed information about the time variations
of local flow properties are stirring this new interest in a field which has seen active
research efforts for many decades. Furthermore, new developments in numerical
methods and increased hardware performance have resulted in advanced computer
facilities which allow the experimental investigations to be supported by fluid flow
computations. Their aim is to provide information on the time-dependent loading
of structures due to their interaction with surrounding fluids. Research results are
mainly needed for the design of structures and reliability controls. The methods
currently employed are based on analytical or semi-empirical models requiring force
coefficients from the experimental and numerical work on individual fluid flow–
structure interactions.
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Circular cylinders in cross-flow or the motion of circular cylinders in a fluid at
rest are especially of interest in fields such as offshore and civil engineering or heat
exchanger design in particular. Such flows were investigated by e.g. Keulegan &
Carpenter (1958), Sarpkaya (1976), Williamson (1985), Obasaju, Bearman & Graham
(1988) as well as by Tatsuno & Bearman (1990) and Justesen (1991). The recent
investigations by Sarpkaya (1992), Anagnostopoulos, Iliadis & Ganoulis (1995) and
Lin, Bearman & Graham (1996) should be mentioned among others. A good overview
of engineering applications is given in the book by Naudascher & Rockwell (1994).
Such flows are mainly ruled by complex vortex–vortex and vortex–structure interaction
phenomena involving stability problems, bifurcations and three-dimensional patterns.
Hence, time-dependent computations have to be carried out carefully at low Reynolds
numbers. However there is a lack of experimental data to confirm and verify numerical
results.

It is general practice to provide the required information for the design of fluid-
exposed structures through experimental studies, measuring the forces on the structure
for a prescribed motion either of the fluid or of the structure. One comprehensive
model to describe the in-line motion of an elastically mounted structure, exposed to
excitations by a fluid flow, is the following equation:

m0 ẍ1 + 2m0 ζ0 ω0 ẋ1 + kx1
x1 = ρScm U̇1 − ρSci ẍ1 + 1

2
ρDcd(U1 − ẋ1) |U1 − ẋ1| , (1.1)

see Blevins (1977). Here m0 is the structure mass per unit length, x1 the displacement,
ζ0 the damping coefficient of the structure, ω0 the circular natural frequency of the
structure without fluid surrounding it and kx1

the stiffness parameter. The fluid density
is denoted by ρ, the cross-sectional area by S , the excitation velocity by U1, and D is
a characteristic length, e.g. the diameter. According to the widely used approach of
Morison et al. (1950), three force parameters are included in this equation, the drag
coefficient cd, the inertia coefficient cm and the added-mass coefficient ci, with

cm = ci + 1.0 . (1.2)

Here the increase of 1.0 is the result of the uniform pressure gradient occurring in
a globally accelerated flow. Applying equation (1.1) to the oscillatory motion of a
circular cylinder in a quiescent fluid, the time-dependent in-line force F1 per unit
length acting on the cylinder can be expressed as

F1(t) = − 1
2
ρDcdẋ1|ẋ1| − 1

4
πρD2ci ẍ1 , (1.3)

where t denotes the time. Exciting a cylinder with a prescribed motion x1(t) and
measuring F1(t) allows the motion-averaged ci and cd coefficients to be evaluated by
methods such as least-squares fitting or by Fourier analysis. Constant values of ci and
cd are derived from such experiments, and by similarity analysis generalization of the
results is achieved, showing that both coefficients depend on the Reynolds number
Re and the Keulegan–Carpenter number KC . These key numbers are defined as

Re =
UmaxD

ν
and KC =

Umax

f D
, (1.4)

where Umax is the maximum velocity of the cylinder motion, ν the kinematic fluid
viscosity and f a characteristic frequency. The ratio β = Re/KC , which is denoted
the Stokes parameter or viscous scale parameter, is an alternative key parameter and
was first introduced by Sarpkaya (1976). In the present study the translational motion
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x1(t) is given by the harmonic oscillation

x1(t) = −A sin(2πf t) , (1.5)

where A denotes the amplitude of the cylinder motion. Thus the Keulegan–Carpenter
number can be written as

KC =
2πA

D
. (1.6)

There have been numerous investigations using the right-hand side of equation
(1.1) to obtain ci, cm and cd through experimental techniques, e.g. see Sarpkaya
(1976, 1986), Troesch & Kim (1991), Bearman, Lin & Mackwood (1992) and in
recent times Kühtz, Bearman & Graham (1997). Some of these experiments have
been accompanied by analytical investigations and lately by numerical studies, see
Bearman et al. (1985), Stansby & Smith (1991), Sarpkaya et al. (1992), Sarpkaya
(1992) as well as the work of Newman & Karniadakis (1995) and Lin et al. (1996).
The latter have benefited from recent advances in numerical techniques and by the
increased computer power. Combining advanced numerical methods, e.g. multigrid
solvers, and increased computer power, e.g. by parallel computing, allows direct
numerical studies of the fluid motion induced by an oscillating cylinder. Additionally,
the resulting forces, needed to drive the cylinder or acting on it, can easily be obtained
from the computations. This outlook, to have increasingly advanced computer codes
available in the future, motivated the investigations described in this paper. It was the
aim of this work to provide detailed experimental velocity information and, hence, to
prove that numerical flow predictions can be used to predict reliably the fluid motion
and the forces induced by an oscillating cylinder. The numerical method applied is
described in § 2.

To carry out verification experiments, the authors employed laser Doppler anemo-
metry (LDA) to yield time traces of the local velocities. From these measurements,
phase-averaged velocity information was deduced (see § 3) and compared with the
corresponding numerical data. Results are presented in § 4 and conclusions in § 5
including an outlook on future research.

The authors are pleased to provide the experimental data sets for Re = 100 and
KC = 5 on request. Computer animations (Raster Metafile) for the three mainly inves-
tigated cases are available directly from the authors (duetsch@lstm.uni-erlangen.de)
as well as mpeg files on the Internet site http://www.lstm.uni-erlangen.de/ma3/
hduetsch e.html.

2. Numerical computations
It was the aim of the computational study to predict the two-dimensional fluid

motion induced by the oscillation of a circular cylinder. Considering the cylinder
motion in water at rest, two reference frames suggested themselves for the problem
description. One, the inertial system xi, is connected to the stationary fluid tank.
The other moves with the cylinder and is therefore an accelerated reference system
with its Cartesian coordinates denoted x̃i. While the first approach was used in
the experiments, the second provided advantages for the computations. Both were
connected by the well known relationship

xi = x̃i + xi,s . (2.1)
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Here xi,s denotes the position of the accelerated reference system and is given by

x1,s(t) = x1(t) , (2.2)

x2,s(t) = 0 . (2.3)

Differentiating equation (2.1) in time, the velocity Ui of a fluid element in the inertial
system can be written as

Ui(t) = Ũi(t) +Ui,s(t) . (2.4)

Here Ũi denotes the fluid velocity in the accelerated reference system and Ui,s(t) the
corresponding system velocity, i.e. the cylinder velocity. Hence, the fundamental fluid
mechanics equations for constant density ρ, which was 998.2 kg m3 in all computations,
for the accelerated system and for a two-dimensional flow field are

∂Ũ1

∂x̃1

+
∂Ũ2

∂x̃2

= 0 , (2.5)

ρ

[
∂Ũ1

∂t
+ Ũ1

∂Ũ1

∂x̃1

+ Ũ2

∂Ũ1

∂x̃2

]
= − ∂P

∂x̃1

+ µ

[
∂2Ũ1

∂x̃2
1

+
∂2Ũ1

∂x̃2
2

]
− ρdU1,s

dt
(2.6)

and

ρ

[
∂Ũ2

∂t
+ Ũ1

∂Ũ2

∂x̃1

+ Ũ2

∂Ũ2

∂x̃2

]
= − ∂P

∂x̃2

+ µ

[
∂2Ũ2

∂x̃2
1

+
∂2Ũ2

∂x̃2
2

]
. (2.7)

Here, P is the pressure and µ the dynamic viscosity, which was 1.008 18 mPas for
all computations. Considering the momentum equations (2.6) and (2.7) in the non-
inertial reference frame, the term −ρ dU1,s / dt had to be added, taking the system
acceleration into account.

For the numerical predictions the second approach was chosen in order to perform
computations more efficiently. Applying the general equations in the inertial system,
the numerical grid had to be moved and adjusted from time step to time step according
to the cylinder motion. But from the cylinder’s point of view the grid did not need to
be changed during the computations because of the chosen cylinder-fixed coordinate
system. Additional computational time had to be spent finally to retransform the
velocity vector field into the inertial system by adding the system velocity Ui,s as well
as for calculation of the actual location of the grid points by adding the position
vector xi,s(t) of the system; see equations (2.1) and (2.4). As both transformations
could be done algebraically, little computational effort had to be spent on these
operations, which was the main advantage of the computational approach. It was a
valid approach for the present study, as the cylinder walls were dimensionally stable
and the influence of the outer walls of the water tank was negligible. Furthermore, for
future studies, this numerical treatment of moving boundaries can easily be extended
to different shapes of structures or arrays of structures, to combinations of oscillating
flow and oscillating structures as well as to arbitrary kinematic functions of motion.

The boundary conditions were changed from the original viewpoint of a flow
induced by the motion of a cylinder to oscillating flow around a cylinder at rest. The
fluid velocity at the outer boundary Ũi,b oscillated with the negative cylinder velocity,
and on the cylinder surface the no-slip condition was assumed as if investigating
oscillating flow around a cylinder at rest:

Ũi,b = Ui,b −Ui,s(t) . (2.8)

For the numerical investigations an adapted version of the computer code fastest-
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Figure 1. Centre region of one computational grid consisting of concentric circles (192 control
volumes along cylinder perimeter). Outer diameter 120 times cylinder diameter.

2D was applied; see fastest-2D. It employed a finite volume discretization and
a simple-like algorithm for the pressure–velocity correction proposed by Patankar
(1980). Furthermore, a multigrid technique was included to speed up convergence
with a performance that was described in detail by Durst et al. (1993). The convection
term was approximated by a central difference scheme of second order. In order to
yield the same order of accuracy in time, the time derivatives in equation (2.6) and
in equation (2.7) were consistently discretized by the Crank–Nicolson formulation.
Therefore, the numerical method applied was of second order in space and time. The
set of equations was then solved on an O-type structured grid with a non-staggered
arrangement of the variables; see figure 1 and details in § 4.1. For each time step and
each variable the residual had to decrease at least five orders of magnitude, which
was in agreement with the findings of Lin et al. (1996). Hence, in computing one
time step on a grid with 24 576 control volumes about 385 s CPU time had to be
spent on a workstation of about 13 MFlops sustained performance rate. Applying
the multigrid technique with three coarser grid levels the total computing time was
reduced to 95 s.

The present flow configuration had two characteristic time scales:
time scale of diffusive transport

tdiff =
D2

ν
, (2.9)

time scale of convective transport

tconv =
D

Umax

. (2.10)

Considering the Reynolds number as the ratio of both time scales, the convective
time scale tconv for Re = tdiff/tconv = 100 was approximately 1 s. With 720 time steps
per cycle of oscillation, the length of the time steps ∆t was about 0.0069 s and, hence,
sufficiently small to yield time-accurate predictions of the fluid motion. Additionally,
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computations with a 4 times and a 12 times greater time step were performed as well
as computations on different grid levels. The comparison of the results is presented
in § 4.1.

Regarding the kinematic equation (1.5), the calculations started in fact one quarter
of a cycle earlier so that the cylinder position was at its maximum amplitude and the
cylinder started from rest. No artificial disturbances were employed to introduce flow
instability effects on the computations.

The computations carried out in this work provided time-dependent, discrete pres-
sure and velocity distributions. For the validation of the computational results, both
velocity components were compared in detail with the experimental results (see § 4.1).

Furthermore, from the velocity field the vorticity

Ω =
∂ui

∂xj
− ∂uj

∂xi
, with i = 1 and j = 2, (2.11)

was calculated as an area-weighted mean value Ω̄. Considering

Ω̄ =
1

S

∫
ΩdS , (2.12)

where S denotes an area, and applying Stokes theorem, Ω̄ resulted in the form

Ω̄ =
1

S

(∮
u1dx1 +

∮
u2dx2

)
. (2.13)

Equation (2.13) was evaluated along each control volume boundary assuming constant
velocities at each surface. From the computed vorticity distribution vortex shedding
and vortex motion could easily be recognized. It was therefore evaluated to determine
the time-dependent vortex dynamics induced by the oscillating cylinder. Fundamen-
tally different mechanisms were revealed for the three flow regimes investigated in
detail, e.g. see Williamson (1985) and Tatsuno & Bearman (1990).

The pressure distribution was determined directly by the computational method.
Hence, by integrating the surface pressure and shear stress acting on the cylinder
the in-line and the lift forces per unit length were computed. By applying a Fourier
analysis to the in-line force history according to equation (1.3), the force coefficients
cd and ci were calculated. They were compared with the experimental results of Kühtz
(1996) for β = 35.

3. Experimental techniques
The test rig built for the present studies consisted in principle of a stationary

tank with fluid at rest, in which the cylinder was sinusoidally actuated by a crank
shaft gear drive. Figure 2 shows its major components: the water tank, the cylinder,
the drive system, and the LDA probe mounted on the top of the two-dimensional
traversing units. The overall dimensions of the water tank were 1.2 × 0.7 × 0.7 m3,
and the diameter of the cylinder used for the investigations was 10 mm and its
length 0.65 m. Any influence of the flow field boundaries has been neglected for
all the results described later. In order to achieve the different non-dimensional
characteristic numbers Re and KC , there were three experimental parameters that
could be adjusted: the rotational speed of the motor drive, the amplitude of oscillation
of the gear drive and the diameter of the cylinder. The rotational speed was controlled
by the supply voltage for the DC motor, the amplitude of oscillation resulted from
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Figure 2. Test rig in cross-section.
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Figure 3. Cross-sectional view of glass-fibre LDA probe.

the off-centre position of the eccenter drive. During the setting up of the experiment
and the initial tests, emphasis was placed on a smooth and uniform sinusoidal motion
of the cylinder, avoiding any distortion by vibration or stick-slip effects.

The LDA adopted was a slightly modified LDA system built at LSTM for wind
tunnel applications; see Lienhart & Böhnert (1992). It consisted of a glass fibre LDA
probe head and a LDA base unit. The base unit incorporated the Ar ion laser light
source, the beam and colour separators, the Bragg cells and the fibre couplers, thus
providing two blue (488 nm) and two green (515 nm) frequency-shifted laser beams.
The laser beams were transmitted by monomode polarization preserving glass fibres
to the LDA probe, which is shown in cross-sectional view in figure 3. It created a
measuring control volume of about 40 µm diameter at a working distance of 235 mm
from the front lens in water. This allowed simultaneous two-component velocity
measurements in backscatter mode.

The electronics applied for LDA signal acquisition were two BSAs (Burst Spectrum
Analyzers) from DANTEC. The crank shaft angle was detected by two light barrier
pulse encoders mounted on the crank shaft. They delivered TTL pulses for 1◦ and
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360◦, respectively, referring to the gear drive system. Their signals were interpreted
by a phase-locked loop electronic system, which was connected to the BSA units. The
angle information was transmitted together with the aquired velocity components to
the computer that also controlled the traversing system, thus allowing for angle/phase-
resolved velocity measurements in the flow field around the oscillating cylinder.

For a well-defined grid of measuring points fixed to the stationary fluid tank, the
LDA system was mounted on the test rig at the top of a two-dimensional traversing
unit. The measuring grid used was equidistant in the x1- and x2-directions with a
mesh size of 2 mm × 1 mm. In order to obtain valid data in the vicinity of the cylinder
surface, the probe was slightly tilted, and the velocity information was transformed
into the coordinate system perpendicular to the cylinder axis. The acquired raw data,
which were measured at one spatial point over the phase angle, were processed,
statistically reduced by averaging the LDA measurements within increments of 1◦ of
crank shaft angle, and rearranged in such a way that fields of flow velocity vectors for
all phase angles resulted. As it was not possible to acquire enough data for accurate
statistics within one cycle of oscillation, averages over several cycles were employed.
For the final data set it was decided to take 72 000 validated velocity measurements
per grid node, i.e. 200 samples per grid node and per degree of phase angle. As the
flow was laminar and therefore the variance of the data low, this turned out to be
sufficient. However, with a period of the oscillation of about 5 s for the first parameter
combination Re = 100 and KC = 5, this resulted in an overall measuring time of
about 3 min per grid point and about 40 h for a complete survey of the flow field.
An artificial flow visualization computer animation was created from the results of
the velocity measurements, that showed the local vorticity distribution in background
colours. The vorticity field was derived by relationships (2.11) to (2.13) as applied for
the numerical results. This animation gave an excellent overview and insight into the
complex time-dependent flow field and allowed an assessment of the measured data.

Not shown in figure 2 is the instrumentation used for visualization of the flow
patterns induced by the oscillating cylinder. The technique adopted was the injection
of dye on the circumference of the cylindrical rod. Three taps of diameter 0.3 mm
were placed in the horizontal symmetry plane at 0◦, 90◦, and 270◦ relative to the
direction of oscillation and they were fed with drawing ink from inside the rod. The
streak lines in the flow field were observed and registered by video from above.

4. Results and discussion
4.1. Results for Re = 100 and KC = 5

The flow around an oscillating cylinder can be complex, showing vortex structures
and mechanisms with different properties and different behaviours. These findings led
Tatsuno & Bearman (1990) to propose the flow regime diagram sketched in figure 4.
The suggested flow regimes in this figure were reproduced in sample experiments by
Knörnschild (1994) carried out at the authors’ institute. These experiments prepared
the basis for the investigations described in this paper.

The first parameter set of the present investigation was Re = 100 and KC = 5,
corresponding to regime A as proposed by Tatsuno & Bearman (1990), see figure 4.
Flow resulting for this parameter combination was characterized by stable, symmetric
and periodic vortex shedding as shown in figure 5. Detailed studies by means of flow
visualization showed that the resulting flow was two-dimensional, providing stable
vortex shedding and two fixed stagnation points at the front and back of the cylinder.
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Figure 4. Flow regimes defined by Tatsuno & Bearman (1990).

Figure 5. Flow visualization for Re = 100 and KC = 5.

The resulting vortex dynamics could be described as follows. As the oscillating
cylinder moved in the forward direction, at the front of the cylinder an upper and
lower boundary layer flow developed, which separated at the same upper and lower
position on the cylinder wall. The separating flow produced two counter-rotating
vortices of apparently the same magnitude of strength, and hence resulting in the
same vortex shape. This vortex production was coming to an end when the maximum
front location of the cylinder was reached and the cylinder started its backward
motion, creating the same vortex formation on the other side of the cylinder, i.e. in
the new wake of the cylinder flow. In addition, the backward motion of the cylinder
caused a splitting of the vortex pair, which was produced by the forward motion, and
finally wake reversal occurs. A sequence of this periodic flow pattern caused by the
forward and backward motion is shown in figure 5.

Carrying out time-dependent two-dimensional flow calculations allowed the fluid
motion in figure 5 to be numerically reproduced. This is reflected by the set of data
presented in figure 6, showing pressure and vorticity isolines for different phase angles
of the oscillating cylinder motion.

The numerical predictions of vorticity isolines, in particular, reflect the vortex
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Pressure isolines Vorticity isolines

0°

96°

192°

288°

Figure 6. Pressure and vorticity isolines (negative values dashed) at Re = 100 and KC = 5.

formation during the forward and backward motion of the oscillating cylinder. The
good agreement between the experimental and numerical results is also indicated by
the comparisons provided in figure 7 of measured and predicted velocity fields for three
angles of the cylinder motion. To compare further the experimental and numerical
results, the data were processed to yield local phase-averaged velocity information.
Data are provided in figure 8 for three phase angles of the oscillatory cylinder motion,
showing velocity profiles at four locations for constant x1-position. The comparison
is considered to be very satisfactory and therefore the authors are able to recommend
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Figure 7. Measured (left) and computed (right) velocity vectors and streamlines in the vicinity of
the cylinder at Re = 100 and KC = 5 for (a) 180◦, (b) 210◦ and (c) 330◦.

the application of numerical prediction procedures to yield detailed information on
the fluid motion induced by oscillating cylinders, at least for low Re and KC .

The numerical predictions were analysed with respect to the independence of the
spatial grid size and the computational time step. It was found that the numerical
data were sufficiently accurate to yield very reliable force information. Hence the
in-line force F1(t) of the oscillatory motion of the cylinder could be computed and
the resulting information be employed to calculate the cd and the ci coefficients
of equation (1.3). Utilizing these coefficients allows the in-line force F1(t) to be
approximately computed through equation (1.3), as is currently done in practice. As
is shown below, F1(t) could be obtained directly from the numerical flow predictions,
yielding precise information on the time variation and on the contributory parts, i.e.
the pressure and shear part, of the in-line force.

By evaluating the numerical results for various grid sizes and computational time
steps ∆t, the in-line force was computed yielding the results presented in table 1 for
Re = 100 and KC = 5. This table contains information for various grid sizes and
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time steps, where #cvperimeter is the number control volumes on the cylinder perimeter
and #cvtotal is the total number of control volumes employed. Here ∆t/T denotes the
normalized time step per period of oscillation and, hence, provides information on
the time resolution of the numerical predictions. For the best spatial resolutions and
the smallest time steps of the predictions, case C, the cd and ci values are cd = 2.09
and ci = 1.45.
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Re = 100, KC = 5 Re = 200, KC = 10

Set A B1 C B2 B3 D1 D2

cd 2.15 2.10 2.09 2.15 2.17 1.81–1.84 1.82–1.89

ci 1.42 1.45 1.45 1.42 1.41 1.02–1.04 0.92–0.97

#cvperimeter 96 192 384 192 192 192 192
#cvtotal 6144 24 576 98 304 24 576 24 576 24 576 24 576
∆t/T 1/720 1/720 1/720 1/180 1/60 1/720 1/60

Table 1. Drag and added-mass coefficients fitted to different computational results.
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Figure 9. In-line force history at Re = 100 and KC = 5 (set C).
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Figure 10. In-line force computed on different grid levels at Re = 100 and KC = 5.

The numerical results allowed the resultant in-line force to be computed with
respect to the pressure and shear stress contributions to the total force. This result
is provided in figure 9, and shows the dominance of the pressure contribution to the
total force. In figure 10 the total force variation with time is presented according
to the parameters of the numerical predictions of table 1. The computed results are
compared with the F1(t)-time variation predictions according to equation (1.3). This
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Figure 11. Visualized vortex pattern at Re = 200 and KC = 10.

figure reveals that even the predictions on the coarsest grid and with the largest time
step agree better with the most accurately computed time variation of the in-line
force than the F1(t) variation obtained from equation (1.3) and the force coefficients
of the best set.

4.2. Results for Re = 200 and KC = 10

The present investigations were extended to the parameter combination Re = 200
and KC = 10, which refers to regime F in figure 4. Carrying out flow visualization
experiments revealed a different behaviour of the vortex motion induced by the
cylinder oscillation. When starting the cylinder from rest, symmetric vortex shedding
occurred first and in roughly the same way as described for the Re = 100 and
KC = 5 case. However, after a few cycles of oscillations, the symmetric flow pattern
ceased to exist. The symmetric vortex formation became unstable, resulting in the
occurrence of a stronger vortex on one side of the cylinder and a weaker one on the
other. This is clearly reflected in figure 11, which also indicates that the difference
in the magnitude of the two vortices resulted in a motion of the vortices away from
the cylinder at an angle of approximately 27◦ with respect to the axis along which
the cylinder oscillated. Both vortices which were formed did not cross this axis, but
moved away from it.

In order to verify that the above-described asymmetric vortex motion could also
be obtained through numerical predictions, flow computations were performed for
Re = 200 and KC = 10. The results of these computations are presented in figure
12, showing the same vortex motion as obtained in the experiments.
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Figure 12. Pressure and vorticity isolines (negative values dashed) at Re = 200 and KC = 10.

Figure 12 clearly shows that two vortex pairs formed within each oscillation cycle
and that this formation repeated periodically. In contrast to the vortex formation for
Re = 100 and KC = 5, each pair of vortices consisted of two structures of different
age and different initial strength. Each vortex pair existed over several cycles, mainly
because it was not divided by the oscillating cylinder motion as in the case Re = 100
and KC = 5. Finally, a strong inclined vortex street extending in two opposite
directions was created by the numerical predictions very similar to those observed in
the experiments.
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Figure 13. In-line and lift force for 100 cycles at Re = 200 and KC = 10.
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Figure 14. In-line and lift force history at Re = 200 and KC = 10 (set D2).

As the above-described flow field occurs for a cylinder motion along an axis of
symmetry, there cannot be a preferred direction of the vortices when they move away
inclined to the axis of the cylinder motion. Therefore, the induced flow field possesses
two solutions, providing vortex streets inclined positively and negatively with respect
to the axis of the cylinder motion. This was also reported by Tatsuno & Bearman
(1990) (see their figure 31), where an example of the alternative angle for the vortex
street inclination was presented.

In order to investigate further the Re = 200 and KC = 10 flow case, the authors
performed stability investigations of this flow. These revealed that the cyclic flow
pattern formation shown in figures 11 and 12 was only weakly stable and therefore
showed measurable and predictable deviations from periodicity. This is reflected by
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Figure 15. Variation of the in-line force between different cycles at Re = 200 and KC = 10.
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Figure 16. Variation of the lift force between different cycles at Re = 200 and KC = 10.

KC 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 15.0

regime A∗ A∗ A∗ A∗ A∗ A C E E/F F G G

cd 10.4 5.39 3.72 2.98 2.28 1.97 1.82 1.73 1.78–1.79 1.72–1.73 1.80 1.78–1.81

ci 1.37 1.36 1.35 1.34 1.31 1.30 1.30 1.17 1.07–1.15 1.14–1.15 0.946 0.385–0.511

Table 2. Computed drag and added mass-coefficients for β = 35.

the results of the flow predictions shown in figure 13, presenting the lift force F2 in
relation to the corresponding in-line force F1 of the oscillating cylinder. Results of
100 oscillation cycles are plotted and these reveal strong cycle-to-cycle variations of
the total force vector. Details of the computationally predicted non-periodic results
are also shown in figures 14, 15 and 16, showing the strong cycle-to-cycle variations
of the forces acting on the oscillating cylinder. Obviously the approach of Morison
et al. (1950) neglected these findings as the flow is assumed to be fully periodic.
Hence, a range of force coefficients is given in table 1. These flow fluctuations were
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Figure 17. Measured cycle-to-cycle data variation at Re = 200 and KC = 10.
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Figure 18. Drag coefficients for β = 35.

also observed in the experiments. Time traces of local velocity measurements are
presented in figure 17, revealing remarkable differences between velocities at the same
point and for the same phase position, but from different cycles. Beyond this, extreme
deviations of single cycles from the mean values were measured, e.g. for cycles 33–36.

4.3. Results for β = 35

Further computations for the ratio β = 35 were carried out mainly to compare force
coefficients with the experimental results of Kühtz (1996). These flow predictions
were performed on the fourth grid level with 192 control volumes on the cylinder
surface and 24 576 control volumes in the total flow field; 180 time steps were
chosen for each cycle of oscillation. The drag and added-mass coefficients derived
from these computations are presented in table 2. They were evaluated by Fourier
analysis of each cycle neglecting the first 5 to 10. In order to respect noticeable cycle-
to-cycle fluctuations, a range of coefficients was calculated. Nevertheless, regarding
the in-line force history again deviations between the original and the reproduced
functions occurred as already demonstrated in figure 10. The cm-values were calculated
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Figure 19. Inertia coefficients for β = 35.
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Figure 20. In-line and lift force history at Re = 210 and KC = 6.

according to equation (1.2). The drag and inertia coefficients were then compared with
the results of Kühtz (1996) and the well-known theoretical analysis of Wang (1968)
(figures 18 and 19). The drag coefficients derived from the numerical predictions were
found to be in good agreement and the inertia coefficients to be systematically lower
than those from the experiments. Both revealed similar behaviour in comparison with
the experiments when increasing KC beyond the two-dimensional regimes. Hence,
in some regimes the three-dimensional flow structures seem to have little influence
on the in-line force and on the vortex dynamics observed in the plane perpendicular
to the cylinder axis. On the other hand considering the results for small values of



268 H. Dütsch, F. Durst, S. Becker and H. Lienhart

Pressure isolines Vorticity isolines

2°

110°

218°

326°

Figure 21. Pressure and vorticity isolines (negative values dashed) at Re = 210 and KC = 6.

KC both coefficients tend asymptotically towards the theory of Wang (1968) giving
cd = 4.848/KC and cm = 2.382 for this case, see Bearman et al. (1985).

In order to prove the existence of another fundamental vortex pattern typical of
the flow at low Re and KC the parameter combination Re = 210 and KC = 6
was considered more detailed. According to the classification of Tatsuno & Bearman
(1990) the resulting flow belongs to regime E, see figure 4, representing temporarily
stable V-type vortex streets.

The computed lift force history, see figure 20, showed that the vortex shedding
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Figure 22. Flow pattern in regime E for KC = 6.28 and Re = 161. Reprint from Tatsuno &
Bearman (1990) (figure 23a) in reverse colours.

was first symmetric to the plane of oscillation and then became unstable involving
a strong increase of the lift force and a slight decrease of the in-line force. After
about 15 cycles no more cycle-to-cycle variation occurred. The resulting periodic
vortex shedding and motion is presented in figure 21. At different phase positions
the pressure distribution and the vorticity isolines in the vicinity of the cylinder are
given, demonstrating complex vortex–vortex and cylinder–vortex interactions. While
the asymmetry of the vortex shedding near to the cylinder wall is similar to that
observed for Re = 200 and KC = 10, an outer system of vortices could be identified,
which was generated the cycle before. As these outer vortices remained near the
plane of oscillation they strongly interacted with the boundary layers of the returning
cylinder. Therefore their vorticity magnitude decreased rapidly. Finally, pairs of outer
vortices were generated in each half of the cylinder period, which were convected to
the same side of the plane of oscillation. A global V-type convection pattern resulted,
which was much less pronounced than in regime F.

Despite the three-dimensional structures found in experiments, the numerically
predicted flow agrees well with the flow visualization shown in figure 22. In the work of
Tatsuno & Bearman (1990) it is noted that the direction of convection intermittently
changed, and they presumed that this switching of the flow is triggered by small
disturbances. But for the computations no artificial disturbances were induced, which
stabilized the direction of vortex convection to one side.

5. Conclusions
The present paper summarizes results of experimental and numerical flow investi-

gations with the flow being induced by harmonic oscillations of a cylinder in a fluid
at rest. Three cases were considered in detail, characterized by the Reynolds number
and Keulegan–Carpenter number combinations Re = 100 and KC = 5, Re = 200
and KC = 10 and also Re = 210 and KC = 6. These cases corresponded to flows
belonging to different flow regimes according to the results of Williamson (1985) or
the diagrammatic presentation by Tatsuno & Bearman (1990).

For the first set of Re and KC , periodic vortex formations resulted, consisting
of vortices with symmetric locations with respect to the line of motion of the os-
cillating cylinder. Good agreement was obtained between experimental results and
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corresponding numerical flow predictions. This good agreement confirms that both
the experimental and the numerical results are sufficiently accurate to yield physi-
cally reliable information on the time-dependent flow induced by oscillatory cylinder
motion. Hence, computer codes to predict the oscillatory fluid motion and to deduce
the lift and in-line force information are readily employable within the investigated
parameter range.

The flow pattern obtained for Re = 200 and KC = 10 differed drastically from
that for Re = 100 and KC = 5 as well as for Re = 210 and KC = 6. The vortex
formation turned out to be asymmetric, yielding a vortex street that moved along
a line which was inclined with respect to the direction of motion of the oscillating
cylinder. This flow turned out to be only weakly stable, resulting in cycle-to-cycle
variations of the local flow properties. The cycle-to-cycle variations were also found
when considering the forces acting on the cylinder. The numerical findings regarding
the weak stability of the flow pattern as well as the vortex dynamics for Re = 200
and KC = 10 were confirmed by the experiments carried out for this parameter set,
although three-dimensional flow occurs in this regime.

A third fundamentally different vortex pattern was found, on investigating the flow
field numerically for Re = 210 and KC = 6. Vortex pairs convected periodically to
the same side of the plane of oscillation creating a V-type pattern. Good agreement
with experimental flow visualization and force coefficients was observed as well as
for other results at β = 35, which tended asymptotically towards the theory of Wang
(1968). Nevertheless, good agreement was obtained not only for the regimes A∗ and A,
where two-dimensional flow was found, but also in regimes where three-dimensional
structures arise along the cylinder axis.

These results as well as those of other authors, e.g. Lin et al. (1996), clearly confirm
that both flow field and force coefficients can be reliably obtained by numerical
solution of the governing fluid mechanics equations within the present range of
parameters.

For future investigations the coupled numerical simulation of the response of an
elastically mounted structure to fluid flow excitation, see e.g. Newman & Karniadakis
(1995), will be of major interest. The right-hand side of the equation of motion of
a structure would be determined directly by the flow field predictions, taking into
account all effects of vortex shedding and vortex dynamics in time.

This work was sponsored by a grant from the Bavarian Consortium for High Per-
formance Computing, FORTWIHR, and by the European Union under a SCIENCE
contract, which the authors gratefully acknowledge. The authors are also grateful to
Prof. M. Tatsuno for allowing them to reprint his figure, and to Dr S. Kühtz for
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